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Stratification Learning: Detecting Mixed Density and
Dimensionality in High Dimensional Point Clouds

Gloria Haro, Gregory Randall, and Guillermo Sapiro
IMA and Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455
haro@ima.umn.edu,randall@fing.edu.uy,guille@umn.edu

Abstract

The study of point cloud data sampled from a stratification, a collection of manifolds with possible
different dimensions, is pursued in this paper. We present a technique for simultaneously soft clustering and
estimating the mixed dimensionality and density of such structures. The framework is based on a maximum
likelihood estimation of a Poisson mixture model. The presentation of the approach is completed with
artificial and real examples demonstrating the importance of extending manifold learning to stratification
learning.

1 Introduction
Data in high dimensions is becoming ubiquitous, from image analysis and finances to computational biol-
ogy and neuroscience. This data is often given or represented as samples embedded in a high dimensional
Euclidean space, point cloud data, though it is assumed to belong to lower dimensional manifolds. Thus, in
recent years, there have been significant efforts in the development of methods to analyze these point clouds
and their underlying manifolds. These include numerous techniques for the estimation of the intrinsic dimen-
sion of the data and also its projection onto lower dimensional representations. These disciplines are often
called manifold learning and dimensionality reduction. A few examples include [2, 3, 4, 9, 10, 11, 12, 15].

The vast majority of the manifold learning and dimensionality reduction techniques developed in the
literature assume, either explicitly or implicitly, that the given point cloud are samples of a unique mani-
fold. It is very easy to realize that a significant part of the interesting data has mixed dimensionality and
complexity. The work here presented deals with this more general case, where there are different dimen-
sionalities/complexities present in the point cloud data. That is, we have samples not of a manifold but
of a stratification. The main aim is to cluster the data according to the complexity (dimensionality) of the
underlying possible multiple manifolds. Such clustering can be used both to better understand the varying
dimensionality and complexity of the data, e.g., states in neural recordings or different human activities for
video analysis, or as a pre-processing step for the above mentioned manifold learning and dimensionality
reduction techniques.

To appear in NIPS 2006.
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This clustering-by-dimensionality task has been recently explored in a handful of works. Barbará and
Chen, [1], proposed a hard clustering technique based on the fractal dimension (box-counting). Starting
from an initial clustering, they incrementally add points into the cluster for which the change in the frac-
tal dimension after adding the point is the lowest. They also find the number of clusters and the intrinsic
dimension of the underlying manifolds. Gionis et al., [7], use local growth curves to estimate the local
correlation dimension and density for each point. The new two-dimensional representation of the data is
clustered using standard techniques. Souvenir and Pless, [14], use an Expectation Maximization (EM) type
of technique, combined with weighted geodesic multidimensional scaling. The weights measure how well
each point fits the underlying manifold defined by the current set of points in the cluster. After clustering,
each cluster dimensionality is estimated following [10]. Huang et al., [8], cluster linear subspaces with an
algebraic geometric method based on polynomial differentiation and a Generalized PCA. They search for the
best combination of linear subspaces that explains the data, and find the number of linear subspaces and their
intrinsic dimension. The work of Mordohai and Medioni, [11], estimates the local dimension using tensor
voting.

These recent works have clearly shown the necessity to go beyond manifold learning, into “stratification
learning.” In our work, we do not assume linear subspaces, and we simultaneously estimate the soft clustering
and the intrinsic dimension and density of the clusters. This collection of attributes is not shared by any of
the pioneering works just described. Our approach is an extension of the Levina and Bickel’s local dimension
estimator [10]. They proposed to compute the intrinsic dimension at each point using a Maximum Likelihood
(ML) estimator based on a Poisson distribution. The local estimators are then averaged, under the assumption
of a single uniform manifold. We propose to compute a ML on the whole point cloud data at the same time
(and not one for each point independently), and use a Poisson mixture model, which permits to have different
classes, each one with their own dimension and sampling density. This technique automatically gives a soft
clustering according to dimensionality and density, with an estimation of both quantities for each class. Our
approach assumes that the number of classes is given, but we are discovering the actual number of underlying
manifolds. If we search for a larger than needed number of classes, we obtain some classes with the same
dimensionality and density or some classes with very few representatives, as shown in the examples later
presented.

The remainder of this paper is organized as follows: In Section 2 we review the method proposed by
Levina and Bickel, [10], which gives a local estimation of the intrinsic dimension and has inspired our work.
In Section 3 we present our core contribution of simultaneous soft clustering and dimensionality and density
estimation. We present experiments with synthetic and real data in Section 4, and finally, some conclusions
are presented in Section 5.

2 Local intrinsic dimension estimation
Levina and Bickel (LB), [10], proposed a geometric and probabilistic method which estimates the local
dimension (and density) of a point cloud data. This is the approach we here extend, which is based on the
idea that if we sample an m-dimensional manifold with T points, the proportion of points that fall into a ball
around a point xt is k

T ≈ f(xt)V (m)Rk(xt)m, where the given point cloud, embedded in high dimensions
D, is X = {xt ∈ RD; t = 1, . . . , T}, k is the number of points inside the ball, f(xt) is the local sampling
density at point xt, V (m) is the volume of the unit sphere in Rm, and Rk(xt) is the Euclidean distance
from xt to its k-th nearest neighbor (kNN). Then, they consider the inhomogeneous processN(R, xt), which
counts the number of points falling into a small D-dimensional sphere B(R, xt) of radius R centered at xt.
This is a binomial process, and some assumptions need to be done to proceed. First, if T → ∞, k → ∞,
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and k/T → 0, then we can approximate the binomial process by a Poisson process. Second, the density
f(xt) is constant inside the sphere, a valid assumption for small R. With these assumptions, the rate λ of
the counting process N(R, xt) can be written as λ(R, xt) = f(xt)V (m)mRm−1. The log-likelihood of the
process N(R, xt) is then given by

L(m(xt), θ(xt)) =
∫ R

0

log λ(r, xt)dN(r, xt)−
∫ R

0

λ(r, xt)dr,

where θ(xt) := log f(xt) is the density parameter and the first integral is a Riemann-Stieltjes integral [13].
The maximum likelihood estimators satisfy ∂L/∂θ = 0 and ∂L/∂m = 0, leading to a computation for the
local dimension at point xt, m(xt), depending on all the neighbors within a distance R from xt [10]. In
practice, it is more convenient to compute a fixed amount k of nearest neighbors. Thus, the local dimension

at point xt is m(xt) =
[

1
k−2

∑k−1
j=1 log Rk(xt)

Rj(xt)

]−1

. This estimator is asymptotically unbiased (see [10] for
more details). If the data points belong to the same manifold, we can average over all m(xt) in order to
obtain a more robust estimator. However, if there are two or more manifolds with different dimensions, the
average does not make sense, unless we first cluster according to dimensionality and then we estimate the
dimensionality for each cluster. We briefly toy with this idea now, as a warm up to our simultaneous soft
clustering and estimation technique described in Section 3.

2.1 A two step clustering approach
As a first simple approach to detect and cluster mixed dimensionality (and/or densities), we can combine a
local dimensionality estimator such as the one just described and a clustering technique. For the second step
we use the Information Bottleneck (IB) [16], which is an elegant framework to eventually combine several
local dimension estimators and other possible features such as density [6]. The IB is a technique that allows
to cluster (compress) a variable according to another related variable. Let X be the set of variables to be
clustered and S the relevance variable that gives some information about X . An example is the information
that different words provide about documents of different topics. We call X̃ the clustered version of X . The
optimal X̃ is the one that minimizes the functionalL(p(x̃t|xt)) = I(X̃;X)−βI(X̃;S),where I(·; ·) denotes
mutual information and p(·) the probability density function. There is a trade-off, controlled by β, between
compressing the representation and preserving the meaningful information. In our context, we want to cluster
the data according to the intrinsic dimensionality (and/or density). Then, our relevant variable S will be the
set of (quantized) estimated local intrinsic dimensions. For the joint distribution p(xt, si), si ∈ S, we use the
histogram of local dimensions inside a ball of radius R′ around xt,1 computed by the LB technique.

Examples of this technique will be presented in the experimental Section. Instead of a two-steps algo-
rithm, with local dimensionality and/or density estimation followed by clustering, we now propose a maxi-
mum likelihood technique that combines these steps.

3 Poisson mixture model
The core approach that we propose to study stratifications (mixed manifolds) is based on extending the LB
technique [10]. Instead of modelling each point and its local ball of radius R as a Poisson process and
computing the ML for each ball separately, we consider all the possible balls at the same time in the same

1The value of R′ determines the amount of regularity in the classification.
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ML function. As the probability density function for all the point cloud we consider a mixture of Poisson
distributions with different parameters (dimension and density). Thus, we allow the presence of different
intrinsic dimensions and densities in the dataset. These are automatically computed while being used for soft
clustering.

Let us denote by J the number of different Poisson distributions considered in the mixture, each one
with a (possibly) different dimension m and density parameter θ. We consider the vector set of parameters
ψ = {ψj = (πj , θj ,mj); j = 1, . . . , J}, where πj is the mixture coefficient for class j (the proportion of
distribution j in the dataset), θj is its density parameter (f j = eθ

j

), and mj is its dimension. We denote by
p(·) the probability density function and by P (·) the probability.

As in the LB approach, the observable event will be yt = N(R, xt), the number of points inside the
ball B(R, xt) of radius R centered at point xt. The total number of observations is T ′ and Y = {yt; t =
1, . . . , T ′} is the observation sequence. If we consider every possible ball in the dataset then, T ′ coincides
with the total number of points T in the point cloud. From now on, we will consider this case and T ′ ≡ T .
The density function of the Poisson mixture model is given by

p(yt|ψ) =
J∑
j=1

πjp(yt|θj ,mj) =
J∑
j=1

πj exp

(∫ R

0

log λj(r) dN(r, xt)

)
exp

(
−
∫ R

0

λj(r)dr

)
,

where λj(r) = eθ
j

V (mj)mjrm
j−1. Usually, problems involving a mixture of experts are solved by the Ex-

pectation Maximization (EM) algorithm [5]. In our context, there are two kinds of unknown parameters: The
membership function of an expert (class), πj , and the parameters of each expert, mj and θj . The member-
ship information is originally unknown, thereby making the parameter estimation for each class difficult. The
EM algorithm computes its expected value (E-step) and then this value is used for the parameter estimation
procedure (M-step). These two steps are iterated.

If Y contains T statistically independent variables, then the incomplete data log-likelihood is:

L(Y |ψ) = log p(Y |ψ) = log
T∏
t=1

p(yt|ψ) = Q(ψ) +R(ψ),

Q(ψ) :=
∑
Z

P (Z|Y, ψ) log p(Z, Y |ψ), R(ψ) := −
∑
Z

P (Z|Y, ψ) logP (Z|Y, ψ),

where Z = {zt ∈ C; t = 1, . . . , T} is the missing data (hidden-state information), and the set of class
labels is C = {C1, C2, . . . CJ}. Here, zt = Cj means that the j-th mixture generates yt. We call Q the
expectation of log p(Z, Y |ψ) with respect to Z. The EM algorithm is based on maximizing Q, since while
improving (maximizing) the function Q at each iteration, the likelihood function L is also improved. The
probability density that appears in the function Q can be written as p(Z, Y |ψ) =

∏T
t=1 p(zt, yt|ψ), and the

complete-data log-likelihood becomes

log p(Z, Y |ψ) =
T∑
t=1

J∑
j=1

δjt log
[
p(yt|zt = Cj , ψj)πj

]
, (1)

where a set of indicator variables δjt is used in order to indicate the status of the hidden variables:

δjt ≡ δ(zt, Cj) =

{
1 if yt generated by mixture Cj ,
0 else.
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Considering the expectation, with respect to Z, EZ(·) of (1) and setting ψ to a fixed known value ψn (the
value at step n of the algorithm), everywhere except for the log function, we get a functionQ of ψ. We denote
it by Q(ψ|ψn), and it has the following form

Q(ψ|ψn) =
T∑
t=1

J∑
j=1

hjn(yt) log
[
p(yt|δjt = 1, ψj)πj

]
,

where

hjn(yt) = E[δjt |yt, ψn] = P (δjt = 1|yt, ψn) =
p(yt|δjt = 1, ψjn)π

j
n∑J

l=1 p(yt|δlt = 1, ψln)πln
(2)

is the probability that observation t belongs to mixture j. Finally, the probability density in (2) is

p(yt|δjt = 1, ψjn) = exp

(∫ R

0

log λjn(r)dN(r, xt)

)
exp

(
−
∫ R

0

λjn(r)dr

)
, (3)

where λjn(r) = eθ
j
nV (mj

n)m
j
nr
mj

n−1. As mentioned above, the EM algorithm consists of two main steps.
In the E-step, the function Q(ψ|ψn) is computed, for that, we determine the best guess of the membership
function, i.e., the probabilities hjn(yt). Once we know these probabilities, Q(ψ|ψn) can be considered as
a function of the only unknown, ψ, and it is maximized in order to compute the values of ψn+1, i.e., the
maximum likelihood parameters ψ at step n+1; this is called the M-step. The EM suffers from local maxima,
hitting a local maximum can be prevented running the algorithm several times with different initializations.
Different random subset of points, from the point cloud, may be used in each run. We have experimented
with both approaches and the results are always similar if we initialize all the probabilities equally. The
Algorithm PMM describes the main components of this proposed approach. The estimators πjn+1, mj

n+1,
and θjn+1 are obtained by computing ψjn+1 = arg maxψj Q(ψ|ψn)+λ(

∑J
l=1 π

l−1) in the M-step, where λ
is the Lagrange multiplier that allows to introduce the constraint

∑J
l=1 π

l = 1. This gives equations (4)-(6),
where V (mj) = (2πmj/2)/(mjΓ(mj

2 )), and Γ(mj

2 ) =
∫∞
0
tmj/2−1e−tdt. In order to compute mj

n+1 we
have used the same approach as in [10], by means of a k nearest neighbor graph.

4 Experimental results
We now present a number of experimental results for the technique proposed in Section 3. We often com-
pare it with the two-steps algorithm described in Section 2, and denote this algorithm by LD+IB. In all the
experiments we use the initialization πj0 = 1/J , θj0 = 0, and mj

0 = j, for all j = 1, . . . , J . The distances are
normalized so that the maximum distance is 1. The embedding dimension in all the experiments on synthetic
data is 3, although the results were found to be consistent when we increased the embedding dimension.

The first experiment consists of a mixture of a Swiss roll manifold (700 points) and a line (700 points)
embedded in a three dimensional space. The algorithm (with J = 2 and k = 10) is able to separate both
manifolds. The estimated parameters are collected in Table 1. For each table, we display the estimated
dimension m, density θ, and mixture coefficient π for each one of the classes. We also show the percentage
of points of each manifold that are classified in each class (after thresholding the soft assignment). Figure
1(a) displays both manifolds – each point is colored according to the probability of belonging to each one of
the two possible classes. Tables 1(a) and 1(c) contain the results for both PMM and LD+IB using J = 2.
Table 1(b) shows the results for the PMM algorithm with k = 10 and J = 3. Note how the parameters of the
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Algorithm PMM Poisson Mixture Model
Require: The point cloud data, J (number of desired classes) and k (scale of observation).
Ensure: Soft clustering according to dimensionality and density.

1: Initialization of ψ0 = {πj0,m
j
0, θ

j
0} to any set of values which ensures that

∑J
j=1 π

j
0 = 1.

2: EM iterations on n,
For all j = 1, . . . J , compute:

• E-step: Compute hjn(yt) by (2).

• M-step: Compute

πjn+1 =
1
T

T∑
t=1

hjn(yt) (4)

mj
n+1 =

∑T
t=1 h

j
n(yt)

∑k−1
j=1 log Rk(yt)

Rj(yt)∑T
t=1 h

j
n(yt)(k − 1)

−1

(5)

θjn+1 = log
T∑
t=1

hjn(yt)(k − 1)− log

(
V (mj)

T∑
t=1

hjn(yt)Rk(yt)
mj

)
(6)

Until convergence of ψn, that is, when ||ψn+1 − ψn||2 < ε, for a certain small value ε.

first two classes are quite similar to the ones obtained with J = 2, and the third class is marginal (very small
π). Figure 1(b) shows the PMM classification when J = 3. Note that all the points of the line belong to the
class of dimension 1. The points of the Swiss roll are mainly concentrated in the other class with dimension
2. A slight amount of Swiss roll points belong to a third class with roughly the same dimension as the second
class. Actually, these points are located in the point cloud boundaries, where the underlying assumptions are
not always valid.

If we estimate the dimension of the mixture using the LB technique with k = 10, we obtain 1.70 with a
standard deviation of 5.31. If we use the method proposed by Costa and Hero [4], the estimated dimension is
2. In both cases, the estimated intrinsic dimension is the largest one present in the mixture, ignoring that the
data actually lives in two manifolds of different intrinsic dimension.

The same Table and Figure, second rows, show results for noisy data. We add to the point coordinates
Gaussian noise with σ = 0.6. The results obtained with k = 10 are displayed in Tables 1(d), 1(e) and 1(f),
and in Figures 1(d), 1(e) and 1(f). Note how the classification still separates the two different manifolds,
although the line is much more affected by the noise and it does not look like a one dimensional manifold
anymore. This is reflected also by the estimated dimension which now is bigger. This phenomena is related
to the scale of observation and to the level of noise. If the level of noise is large – e.g., compared to the mean
distance to the k nearest neighbors for a small k – intuitively the estimated intrinsic dimension will be closer
to the embedding dimension (this behavior was experimentally verified). We can again compare the results
with the ones obtained with the LB estimator alone: Estimated dimension 2.71 and standard deviation 1.12.
Using Costa and Hero [4], the estimated dimension varies between 2 and 3 (depending on the number of
bootstrap loops). Both techniques do not consider the possibility of mixed dimensionality.

The experiment in Figure 2 illustrates how the soft clustering is done according to both dimensionality
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Estimated parameters
m 1.00 2.01
θ 5.70 2.48
π 0.5000 0.5000
% points in each class

Line 100 0
SR 0 100

Estimated parameters
m 1.00 2.01 2.16
θ 5.70 2.55 1.52
π 0.5000 0.4792 0.0208

% points in each class
Line 100 0 0
SR 0 96.57 3.43

Estimated dimension
m 1.67 2.00

% points in each class
Line 100 0

Swiss roll 3.45 96.55

(a) PMM (J = 2). (b) PMM (J = 3). (c) LD+IB (J = 2).

Estimated parameters
m 3.02 2.38
θ 7.69 2.73
π 0.4951 0.5049
% points in each class

Line 98.14 1.86
SR 0.86 99.14

Estimated parameters
m 3.01 2.40 2.26
θ 7.70 2.88 1.72
π 0.4910 0.4766 0.0325

% points in each class
Line 97.71 2.29 0
SR 0.71 93.00 6.29

Estimated dimension
m 3.09 2.30

% points in each class
Line 79.71 20.29

Swiss roll 24.71 75.29

(d) PMM (J = 2). (e) PMM (J = 3). (f) LD+IB (J = 2).

Table 1: Clustering results for the Swiss roll (SR) and a line (k = 10), without noise (first row) and with noise
(second row).

and density. The data consists of 2500 points on the Swiss roll, 100 on a line with high density and 50 on
another less dense line. We have set J = 4 and the algorithm gives an “empty class,” thus discovering that
three classes, with correct dimensionality and density, is enough for a good representation. The only errors
are in the borders, as expected.

In order to test the algorithm with real data, we first work with the MNIST database of handwritten digits,2

which has a test set of 10.000 examples. Each digit is an image of 28 × 28 pixels and we treat the data as
784-dimensional vectors.

We study the mixture of digits one and two and apply PMM and LD+IB with J = 2 and k = 10.
The results are shown in Figure 3. Note how the digits are well separated.3 The LB estimator alone gives
dimensions 9.13 for digits one, 13.02 for digits two, and 11.26 for the mixture of both digits. The Costa and
Hero’s method, [4], gives 8, 11 and 9 respectively. Both methods assume a single intrinsic dimension and
give an average of the dimensions of the underlying manifolds.

Next, we experiment with 9-dimensional vectors formed of image patches of 3 × 3 pixels. If we impose
J = 3 and use PMM, we obtain the results in Figure 4. Notice how roughly one class corresponds to patches
in homogeneous zones (approximately constant gray value), a second class corresponds to textured zones
and a third class to patches containing edges. The estimated dimensions in each region are in accordance to
the estimated dimensions using Isomap or Costa and Hero’s technique in each region after separation. This
experiment is just a proof of concept, in the future we will study how to adapt this clustering approach to
image segmentation.

Finally, as an additional proof of the validity of our approach and its potential applications, we use the
PMM framework to separate activities in video, Figure 5 (see also [14]). Each original frame is 480 × 640,

2http://yann.lecun.com/exdb/mnist/
3Since the clustering is done according to dimensionality and density, digits which share these characteristics won’t be separated into

different classes.
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(a) PMM (J = 2) (b) PMM (J = 3) (c) LD+IB (J = 2)

(d) PMM (J = 2) (e) PMM (J = 3) (f) LD+IB (J = 2)

Figure 1: Clustering of a line and a Swiss roll (k = 10). First row without noise, second row with Gaussian
noise (σ = 0.6). Points colored according to the probability of belonging to each class.

Estimated parameters
m 1.94 1.04 0.98 1.93
θ 7.12 3.82 2.66 2.57
π 0.9330 0.0498 0.0167 0.0004

% points in each class
Line 0.0 15.69 84.31 0.0

Line (dense) 0.0 99.00 1.00 0.0
Swiss Roll 98.92 1.08 0.0 0.0

Figure 2: Clustering with mixed dimensions and density (k = 20, J = 4).

sub-sampled to 48 × 64 pixels, with 1673 frames. Four classes are present: standing, walking, jumping,
and arms waving. The whole run took 361 seconds in Matlab, while the classification time (PMM) can be
neglected compared to the kNN component.

5 Conclusions
In this paper we discussed the concept of “stratification learning,” where the point cloud data is not assumed
to belong to a single manifold, as commonly done in manifold learning and dimensionality reduction. We
extended the work in [10] in the sense that the maximum likelihood is computed once for the whole dataset,
and the probability density function is a mixture of Poisson laws, each one modeling different intrinsic dimen-
sions and densities. The soft clustering and the estimation are simultaneously computed. This framework has
been contrasted with a more standard two-steps approach, a combination of the local estimator introduced in
[10] with the Information Bottleneck clustering technique [16]. In both methods we need to compute a kNN-
graph which is precisely the computationally more expensive part. The mixture of Poisson estimators is faster
than the two-steps approach one, it uses an EM algorithm, linear in the number of classes and observations,
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Estimated parameters
m 8.50 12.82
θ 11.20 6.80
π 0.4901 0.5099
% points in each class

Ones 93.48 6.52
Twos 0 100

Estimated dimension
m 9.17 13.74

% points in each class
Ones 94.71 5.29
Twos 9.08 90.02

(a) PMM (b) LD+IB
(c) Some image examples.

Figure 3: Results for digits 1 and 2 (k = 10, J = 2).

Figure 4: Clustering of image patches of 3 × 3 pixels with PMM, colors indicating the different classes
(complexity) (J = 3, k = 30). Left: original and segmented images of a house. Right: original and
segmented images of a portion of biological tissue. Adding spatial regularization is the subject of current
research.

which converges in a few iterations.
The mixture of Poisson model is not only clustering according to dimensionality, but to density as well.

The introduction of additional observations and estimates can also help to separate points that although have
the same dimensionality and density, belong to different manifolds. We would also like to study the use
of ellipsoids instead of balls in the counting process in order to better follow the geometry of the intrinsic
manifolds. Another aspect to study is the use of metrics more adapted to the nature of the data instead of the
Euclidean distance. At the theoretical level, the bias of the PMM model needs to be studied. Results in these
directions will be reported elsewhere.

Samples in each cluster
C1 C2 C3 C4

Standing 416 0 95 0
Walking 0 429 69 25
Waving 0 5 423 4
Jumping 0 18 0 189

Figure 5: Classifying human activities in video (k = 10, J = 4). Four sample frames are shown followed by
the classification results (confusion matrix). Visual analysis of the wrongly classified frames show that these
are indeed very similar to the misclassified class members. Adding features, e.g., optical flow, will improve
the results.
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